glearn.priors.Uniform.log_pdf_hessian#
- Uniform.log_pdf_hessian(hyperparam)#
Hessian of the logarithm of the probability density function of the prior distribution.
- Parameters:
- xfloat or array_like[float]
Input hyperparameter or an array of hyperparameters.
- Returns:
- hessfloat or array_like[float]
The Hessian of the logarithm of probability density function of the input hyperparameter(s).
Notes
Multiple hyperparameters:
Given an array of hyperparameters \(\boldsymbol{\theta} = (\theta_, \dots, \theta_n)\), this function returns the Jacobian vector \(\mathbf{H}\) with the components \(H_{ij} = 0\) if \(i \neq j\) and
\[H_{ii} = \frac{\partial^2}{\partial \theta_i^2} \log p(\theta_i) = \frac{1}{p(\theta_i)} \frac{\partial^2 p(\theta_i)}{\partial \theta_i^2} - \left( \frac{J_i}{p(\theta_i)} \right)^2,\]where \(J_i\) is the Jacobian
\[J_i = \frac{\partial}{\partial \theta_i} \log p(\theta_i).\]Using Log Scale:
If the attribute
use_log_scale
is True, it is assumed that the input argument \(\theta\) is the log of the hyperparameter, so to convert back to the original hyperparameter, the transformation below is performed\[\theta \gets 10^{\theta}.\]As a result, the Hessian is transformed by
\[\begin{split}H_{ij} \gets \begin{cases} H_{ij} \theta_i^2 (\log_e(10))^2 + J_i \log_e(10), & i=j, \\ H_{ij} \theta_i \theta_j (\log_e(10))^2, & i \neq j. \end{cases}\end{split}\]Examples
Create the inverse Gamma distribution with the shape parameter \(\alpha=4\) and rate parameter \(\beta=2\).
>>> from glearn import priors >>> prior = priors.InverseGamma(4, 2) >>> # Evaluate the Hessian of the log-PDF >>> prior.log_pdf_hessian(t) array([[-10.60379622, 0. , 0. ], [ 0. , -3.35321479, 0. ], [ 0. , 0. , -1.06037962]])