3. Use g-learn Docker Container on GPU#
This method neither requires installing CUDA nor g-learn as all are pre-installed in a docker image.
3.1. Install Docker#
First, install docker. Briefly:
sudo apt update
sudo apt install ca-certificates curl gnupg lsb-release
sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \
https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt update
sudo apt install docker-ce docker-ce-cli containerd.io docker-compose-plugin
sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
sudo yum install docker-ce docker-ce-cli containerd.io docker-compose-plugin
sudo systemctl enable docker.service
sudo systemctl enable containerd.service
sudo systemctl start docker
sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
sudo yum install docker-ce docker-ce-cli containerd.io docker-compose-plugin
sudo systemctl enable docker.service
sudo systemctl enable containerd.service
sudo systemctl start docker
Configure docker to run docker without sudo password by
sudo groupadd docker
sudo usermod -aG docker $USER
Then, log out and log back. If docker is installed on a virtual machine, restart the virtual machine for changes to take effect.
3.2. Install NVIDIA Container Toolkit#
To access host’s GPU device from a docker container, install NVIDIA Container Toolkit as follows.
Add the package to the repository:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo yum-config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
Install nvidia-contaner-toolkit by:
sudo apt update
sudo apt install -y nvidia-container-toolkit
sudo yum install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm
sudo dnf install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm
Restart docker:
sudo systemctl restart docker
3.3. Get g-learn Docker image#
Get the g-learn docker image by
docker pull sameli/glearn
The docker image has the followings pre-installed:
CUDA: in
/usr/local/cuda
Python 3.9: in
/usr/bin/python3
Python interpreters: ipython, jupyter
Editor: vim
3.4. Use g-learn Docker Container on GPU#
To use host’s GPU from the docker container, add --gpus all
to any of the docker run
commands, such as by
docker run --gpus all -it sameli/glearn
The followings are some examples of using docker run
with various options:
To check the host’s NVIDIA driver version, CUDA runtime library version, and list of available GPU devices, run
nvida-smi
command by:docker run --gpus all sameli/glearn nvidia-smi
To run the container and open Python interpreter directly at startup:
docker run -it --gpus all sameli/glearn
This also imports g-learn package automatically.
To run the container and open IPython interpreter directly at startup:
docker run -it --gpus all sameli/glearn ipython
This also imports glearn package automatically.
To open Bash shell only:
docker run -it --gpus all --entrypoint /bin/bash sameli/glearn
To mount a host’s directory, such as
/home/user/project
, onto a directory of the docker’s container, such as/root
, use:docker run -it --gpus all -v /home/user/project:/root sameli/glearn