List of Functions

Python Interface

Syntax

Return type

Symbol

User guide

besselj(nu, z, n)

double, double complex

\(\partial^n J_{\nu}(z) / \partial z^n\)

Bessel function of the first kind

bessely(nu, z, n)

double, double complex

\(\partial^n Y_{\nu}(z) / \partial z^n\)

Bessel function of the second kind (Weber function)

besseli(nu, z, n)

double, double complex

\(\partial^n I_{\nu}(z) / \partial z^n\)

Modified Bessel function of the first kind

besselk(nu, z, n)

double, double complex

\(\partial^n K_{\nu}(z) / \partial z^n\)

Modified Bessel function of the second kind

besselh(nu, k, z, n)

double complex

\(\partial^n H^{(k)}_{\nu}(z) / \partial z^n\)

Bessel function of the third kind (Hankel function)

lngamma(x)

double

\(\ln \Gamma(x)\)

Natural logarithm of Gamma function

Function Arguments:

Argument

Type

Symbol

Description

nu

double

\(\nu\)

Parameter of Bessel functions.

k

int

\(k\)

Can be 1 or 2 and sets the type of Hankel function.

z

double, double complex

\(z\)

Real or complex argument of the Bessel functions.

x

double

\(x\)

Real argument of the functions.

n

int

\(n\)

Order of derivative of function. Zero indicates no derivative.

Cython Interface

In Cython interface, the syntax of the real functions are similar to the Python interface. However, the syntax of complex functions start with the letter c in the beginning of each function as shown in the table below.

Symbol

Real Function

Complex Function

\(\partial^n J_{\nu}(z) / \partial z^n\)

besselj(nu, x, n)

cbesselj(nu, z, n)

\(\partial^n Y_{\nu}(z) / \partial z^n\)

bessely(nu, x, n)

cbessely(nu, z, n)

\(\partial^n I_{\nu}(z) / \partial z^n\)

besseli(nu, x, n)

cbesseli(nu, z, n)

\(\partial^n K_{\nu}(z) / \partial z^n\)

besselk(nu, x, n)

cbesselk(nu, z, n)

\(\partial^n H^{(k)}_{\nu}(z) / \partial z^n\)

besselh(nu, k, x, n)

cbesselh(nu, k, z, n)

\(\ln \Gamma(x)\)

lngamma(x)

N/A

In the above table:

  • x is of type double.

  • z is of type double complex.

  • Real functions return double type, with the exception of besselh that always returns double complex type.

  • Complex functions return double complex type.