imate
C++/CUDA Reference
|
Defines the function. More...
#include <gaussian.h>
Public Member Functions | |
Gaussian (double mu_, double sigma_) | |
Sets the default for the parameter mu to 0.0 and for the parameter sigma to 1.0 . More... | |
virtual float | function (const float lambda_) const |
virtual double | function (const double lambda_) const |
virtual long double | function (const long double lambda_) const |
Public Member Functions inherited from Function | |
virtual | ~Function () |
Default virtual destructor. More... | |
Public Attributes | |
double | mu |
double | sigma |
Defines the function.
\[ f: \lambda \mapsto \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{(\lambda - \mu)^2}{\sigma^2}}, \]
where \( \mu \) and \( \sigma \) parameters are the mean and standard deviation of the Gaussian function and should be set by this->mu
and this->sigma
members, respectively.
The matrix function \( f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \) is used in
\[ \mathrm{trace} \left( f(\mathbf{A}) \right). \]
However, instead of a matrix function, the equivalent scalar function \( f: \mathbb{R} \to \mathbb{R} \) is defiend which acts on the eigenvalues of the matrix.
Definition at line 47 of file gaussian.h.
Gaussian::Gaussian | ( | double | mu_, |
double | sigma_ | ||
) |
Sets the default for the parameter mu
to 0.0
and for the parameter sigma
to 1.0
.
Definition at line 34 of file gaussian.cpp.
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 65 of file gaussian.cpp.
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 48 of file gaussian.cpp.
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 80 of file gaussian.cpp.
double Gaussian::mu |
Definition at line 54 of file gaussian.h.
Referenced by function(), and Gaussian().
double Gaussian::sigma |
Definition at line 55 of file gaussian.h.
Referenced by function(), and Gaussian().