imate
C++/CUDA Reference
|
Defines the function \( f: \lambda \mapsto \frac{a \lambda + b}{ c \lambda + d} \). More...
#include <homographic.h>
Public Member Functions | |
Homographic (double a_, double b_, double c_, double d_) | |
Sets the default for the parameter a , b , c , and d . More... | |
virtual float | function (const float lambda_) const |
virtual double | function (const double lambda_) const |
virtual long double | function (const long double lambda_) const |
Public Member Functions inherited from Function | |
virtual | ~Function () |
Default virtual destructor. More... | |
Public Attributes | |
double | a |
double | b |
double | c |
double | d |
Defines the function \( f: \lambda \mapsto \frac{a \lambda + b}{ c \lambda + d} \).
The matrix function \( f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \) is used in
\[ \mathrm{trace} \left( f(\mathbf{A}) \right). \]
However, instead of a matrix function, the equivalent scalar function \( f: \mathbb{R} \to \mathbb{R} \) is defiend which acts on the eigenvalues of the matrix.
Definition at line 41 of file homographic.h.
Homographic::Homographic | ( | double | a_, |
double | b_, | ||
double | c_, | ||
double | d_ | ||
) |
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 63 of file homographic.cpp.
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 43 of file homographic.cpp.
|
virtual |
[in] | lambda_ | Eigenvalue (or singular value) of matrix. |
Implements Function.
Definition at line 83 of file homographic.cpp.
double Homographic::a |
Definition at line 48 of file homographic.h.
Referenced by function(), and Homographic().
double Homographic::b |
Definition at line 49 of file homographic.h.
Referenced by function(), and Homographic().
double Homographic::c |
Definition at line 50 of file homographic.h.
Referenced by function(), and Homographic().
double Homographic::d |
Definition at line 51 of file homographic.h.
Referenced by function(), and Homographic().