special_functions package
Submodules
special_functions.besselh module
- special_functions.besselh.py_besselh(nu, k, z, n=0)
Wrapper for
besselh()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
k (int) – Can be
1
or2
and sets the type of Hankel function.z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.besseli module
- special_functions.besseli.py_besseli(nu, z, n=0)
Wrapper for
besseli()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.besselj module
- special_functions.besselj.py_besselj(nu, z, n=0)
Wrapper for
besselj()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.besselk module
- special_functions.besselk.py_besselk(nu, z, n=0)
Wrapper for
besselk()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.bessely module
- special_functions.bessely.py_bessely(nu, z, n=0)
Wrapper for
bessely()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cbesselh module
- special_functions.cbesselh.py_cbesselh(nu, k, z, n=0)
Wrapper for
cbesselh()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
k (int) – Can be
1
or2
and sets the type of Hankel function.z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cbesseli module
- special_functions.cbesseli.py_cbesseli(nu, z, n=0)
Wrapper for
cbesseli()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cbesselj module
- special_functions.cbesselj.py_cbesselj(nu, z, n=0)
Wrapper for
cbesselj()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cbesselk module
- special_functions.cbesselk.py_cbesselk(nu, z, n=0)
Wrapper for
cbesselk()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cbessely module
- special_functions.cbessely.py_cbessely(nu, z, n=0)
Wrapper for
cbessely()
.- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
special_functions.cython_wrappers module
- special_functions.cython_wrappers.besselh(nu, k, z, n=0)
Computes Bessel function or its derivative, \(\partial H^{(1)}_{\nu}(z) / \partial z\) and \(\partial H^{(2)}_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
k (int) – Can be
1
or2
and sets the type of Hankel function.z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(H^{(k)}_{\nu}(z)\) and its first and second derivatives for \(k = 1, 2\). Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument and \(k = 1\). Note that the output variables are compelx, despite the input
z
is real.>>> # import module in a *.py file >>> from special_functions import besselh >>> nu = 2.5 >>> k = 1 >>> z = 2.0 >>> d0h = besselh(nu, k, z) # no derivative >>> d1h = besselh(nu, k, z, 1) # 1st derivative >>> d2h = besselh(nu, k, z, 2) # 2nd derivative
The example below demonstrates complex argument and \(k = 2\).
>>> nu = 2.5 >>> k = 2 >>> z = 2.0+1.0j >>> d0h = besselh(nu, k, z) # no derivative >>> d1h = besselh(nu, k, z, 1) # 1st derivative >>> d2h = besselh(nu, k, z, 2) # 2nd derivative
- special_functions.cython_wrappers.besseli(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial I_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(I_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besseli >>> nu = 2.5 >>> z = 2.0 >>> d0i = besseli(nu, z) # no derivative >>> d1i = besseli(nu, z, 1) # 1st derivative >>> d2i = besseli(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0i = besseli(nu, z) # no derivative >>> d1i = besseli(nu, z, 1) # 1st derivative >>> d2i = besseli(nu, z, 2) # 2nd derivative
- special_functions.cython_wrappers.besselj(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial J_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(J_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besselj >>> nu = 2.5 >>> z = 2.0 >>> d0j = besselj(nu, z) # no derivative >>> d1j = besselj(nu, z, 1) # 1st derivative >>> d2j = besselj(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0j = besselj(nu, z) # no derivative >>> d1j = besselj(nu, z, 1) # 1st derivative >>> d2j = besselj(nu, z, 2) # 2nd derivative
- special_functions.cython_wrappers.besselk(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial K_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(K_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besselk >>> nu = 2.5 >>> z = 2.0 >>> d0k = besselk(nu, z) # no derivative >>> d1k = besselk(nu, z, 1) # 1st derivative >>> d2k = besselk(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0k = bessely(nu, k) # no derivative >>> d1k = bessely(nu, k, 1) # 1st derivative >>> d2k = bessely(nu, k, 2) # 2nd derivative
- special_functions.cython_wrappers.bessely(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial Y_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(Y_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import bessely >>> nu = 2.5 >>> z = 2.0 >>> d0y = bessely(nu, z) # no derivative >>> d1y = bessely(nu, z, 1) # 1st derivative >>> d2y = bessely(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0y = bessely(nu, z) # no derivative >>> d1y = bessely(nu, z, 1) # 1st derivative >>> d2y = bessely(nu, z, 2) # 2nd derivative
- special_functions.cython_wrappers.lngamma(x)
Computes the natural logarithm of Gamma function. This function is a wrapper for
gamma
function in cephes library.- Parameters:
x (double) – Input argument of function.
- Returns:
Value of the function.
- Return type:
double
Example:
This example computes \(\ln \Gamma(x)\) for real argument. Note, this function uses python’s global lock interpreter (
gil
).>>> # cimport module in a *.py file >>> from special_functions import lngamma >>> x = 2.0 >>> y = lngamma(x)
See also
lngamma()
: cython wrapper to this function.
special_functions.lngamma module
- special_functions.lngamma.py_lngamma(x)
Python wrapper for
lngamma()
function.
Module contents
- special_functions.besselh(nu, k, z, n=0)
Computes Bessel function or its derivative, \(\partial H^{(1)}_{\nu}(z) / \partial z\) and \(\partial H^{(2)}_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
k (int) – Can be
1
or2
and sets the type of Hankel function.z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(H^{(k)}_{\nu}(z)\) and its first and second derivatives for \(k = 1, 2\). Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument and \(k = 1\). Note that the output variables are compelx, despite the input
z
is real.>>> # import module in a *.py file >>> from special_functions import besselh >>> nu = 2.5 >>> k = 1 >>> z = 2.0 >>> d0h = besselh(nu, k, z) # no derivative >>> d1h = besselh(nu, k, z, 1) # 1st derivative >>> d2h = besselh(nu, k, z, 2) # 2nd derivative
The example below demonstrates complex argument and \(k = 2\).
>>> nu = 2.5 >>> k = 2 >>> z = 2.0+1.0j >>> d0h = besselh(nu, k, z) # no derivative >>> d1h = besselh(nu, k, z, 1) # 1st derivative >>> d2h = besselh(nu, k, z, 2) # 2nd derivative
- special_functions.besseli(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial I_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(I_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besseli >>> nu = 2.5 >>> z = 2.0 >>> d0i = besseli(nu, z) # no derivative >>> d1i = besseli(nu, z, 1) # 1st derivative >>> d2i = besseli(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0i = besseli(nu, z) # no derivative >>> d1i = besseli(nu, z, 1) # 1st derivative >>> d2i = besseli(nu, z, 2) # 2nd derivative
- special_functions.besselj(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial J_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(J_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besselj >>> nu = 2.5 >>> z = 2.0 >>> d0j = besselj(nu, z) # no derivative >>> d1j = besselj(nu, z, 1) # 1st derivative >>> d2j = besselj(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0j = besselj(nu, z) # no derivative >>> d1j = besselj(nu, z, 1) # 1st derivative >>> d2j = besselj(nu, z, 2) # 2nd derivative
- special_functions.besselk(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial K_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(K_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import besselk >>> nu = 2.5 >>> z = 2.0 >>> d0k = besselk(nu, z) # no derivative >>> d1k = besselk(nu, z, 1) # 1st derivative >>> d2k = besselk(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0k = bessely(nu, k) # no derivative >>> d1k = bessely(nu, k, 1) # 1st derivative >>> d2k = bessely(nu, k, 2) # 2nd derivative
- special_functions.bessely(nu, z, n=0)
Computes Bessel function or its derivative, \(\partial Y_{\nu}(z) / \partial z\).
- Parameters:
nu (double) – Parameter \(\nu\) of Bessel function.
z (double or double complex) – Input argument of function.
n (int) – Order of the derivative of function. Zero means no derivative.
- Returns:
Value of Bessel function.
- Return type:
double or double complex
Example:
The two example computes Bessel function \(Y_{\nu}(z)\) and its first and second derivatives. Note, this function uses the global lock interpreter (
gil
).The example below demonstrates real argument.
>>> # import module in a *.py file >>> from special_functions import bessely >>> nu = 2.5 >>> z = 2.0 >>> d0y = bessely(nu, z) # no derivative >>> d1y = bessely(nu, z, 1) # 1st derivative >>> d2y = bessely(nu, z, 2) # 2nd derivative
The example below demonstrates complex argument.
>>> nu = 2.5 >>> z = 2.0+1.0j >>> d0y = bessely(nu, z) # no derivative >>> d1y = bessely(nu, z, 1) # 1st derivative >>> d2y = bessely(nu, z, 2) # 2nd derivative
- special_functions.lngamma(x)
Computes the natural logarithm of Gamma function. This function is a wrapper for
gamma
function in cephes library.- Parameters:
x (double) – Input argument of function.
- Returns:
Value of the function.
- Return type:
double
Example:
This example computes \(\ln \Gamma(x)\) for real argument. Note, this function uses python’s global lock interpreter (
gil
).>>> # cimport module in a *.py file >>> from special_functions import lngamma >>> x = 2.0 >>> y = lngamma(x)
See also
lngamma()
: cython wrapper to this function.