freealg.FreeForm#
- class freealg.FreeForm(A, support=None, delta=1e-06, dtype='complex128', **kwargs)#
Free probability for large matrices.
- Parameters:
- Anumpy.ndarray
The 2D symmetric \(\mathbf{A}\). The eigenvalues of this will be computed upon calling this class. If a 1D array provided, it is assumed to be the eigenvalues of \(\mathbf{A}\).
- supporttuple, default=None
The support of the density of \(\mathbf{A}\). If None, it is estimated from the minimum and maximum of the eigenvalues.
- delta: float, default=1e-6
Size of perturbations into the upper half plane for Plemelj’s formula.
- dtype{
'complex128'
,'complex256'
}, default ='complex128'
Data type for inner computations of complex variables:
'complex128'
: 128-bit complex numbers, equivalent of two double precision floating point.'complex256'
: 256-bit complex numbers, equivalent of two long double precision floating point. This optino is only available on Linux machines.
When using series acceleration methods (such as setting
continuation
infit()
function towynn-eps
), setting a higher precision floating point arithmetics might improve conference.- **kwargsdict, optional
Parameters for the
supp()
function can also be prescribed here whensupport=None
.
Notes
TBD
References
[1]Reference.
Examples
>>> from freealg import FreeForm
- Attributes:
- eignumpy.array
Eigenvalues of the matrix
- support: tuple
The predicted (or given) support \((\lambda_{\min}, \lambda_{\max})\) of the eigenvalue density.
- psinumpy.array
Jacobi coefficients.
- nint
Initial array size (assuming a square matrix when \(\mathbf{A}\) is 2D).
Methods
fit
([method, K, alpha, beta, reg, ...])Fit model to eigenvalues.
density
([x, plot, latex, save])Evaluate spectral density.
hilbert
([x, rho, plot, latex, save])Compute Hilbert transform of the spectral density.
stieltjes
([x, y, plot, latex, save])Compute Stieltjes transform of the spectral density on a grid.
decompress
(size[, x, method, max_iter, ...])Free decompression of spectral density.
eigvalsh
([size, seed])Estimate the eigenvalues.
cond
([size, seed])Estimate the condition number.
trace
([size, p, seed])Estimate the trace of a power.
slogdet
([size, seed])Estimate the sign and logarithm of the determinant.
norm
([size, order, seed])Estimate the Schatten norm.