freealg.supp#
- freealg.supp(eigs, method='asymp', k=None, p=0.001)#
Estimates the support of the eigenvalue density.
- Parameters:
- method{
'range'
,'asymp'
,'jackknife'
,'regression'
,'interior'
,'interior_smooth'
}, default='asymp'
The method of support estimation:
'range'
: no estimation; the support is the range of the eigenvalues.'asymp'
: assume the relative error in the min/max estimator is \(1/n\).'jackknife'
: estimates the support using Quenouille’s [1] jackknife estimator. Fast and simple, more accurate than the range.'regression'
: estimates the support by performing a regression under the assumption that the edge behavior is of square-root type. Often most accurate.'interior'
: estimates a support assuming the range overestimates; uses quantiles \((p, 1-p)\).'interior_smooth'
: same as'interior'
but using kernel density estimation, from [2].
- kint, default = None
Number of extreme order statistics to use for
method='regression'
.- pfloat, default=0.001
The edges of the support of the distribution is detected by the \(p\)-quantile on the left and \((1-p)\)-quantile on the right where
method='interior'
ormethod='interior_smooth'
. This value should be between 0 and 1, ideally a small number close to zero.
- method{
- Returns:
- lam_mfloat
Lower end of support interval \([\lambda_{-}, \lambda_{+}]\).
- lam_pfloat
Upper end of support interval \([\lambda_{-}, \lambda_{+}]\).
See also
References
[1]Quenouille, M. H. (1949). Approximate tests of correlation in time-series. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 45, No. 3, pp. 483-484). Cambridge University Press.
[2]Cuevas, A., & Fraiman, R. (1997). A plug-in approach to support estimation. The Annals of Statistics, 2300-2312.