freealg.slogdet#
- freealg.slogdet(A, N=None)#
Estimate the sign and logarithm of the determinant of a Hermitian matrix.
This function estimates the slogdet of the matrix \(\mathbf{A}\) or a larger matrix containing \(\mathbf{A}\) using free decompression.
- Parameters:
- Anumpy.ndarray
The symmetric real-valued matrix \(\mathbf{A}\) whose condition number (or that of a matrix containing \(\mathbf{A}\)) are to be computed.
- Nint, default=None
The size of the matrix containing \(\mathbf{A}\) to estimate eigenvalues of. If None, returns estimates of the eigenvalues of \(\mathbf{A}\) itself.
- Returns:
- signfloat
Sign of determinant
- ldfloat
natural logarithm of the absolute value of the determinant
Notes
This is a convenience function using
freealg.eigh()
.Examples
>>> from freealg import norm >>> from freealg.distributions import MarchenkoPastur >>> mp = MarchenkoPastur(1/50) >>> A = mp.matrix(3000) >>> sign, ld = slogdet(A, 100_000)