imate
C++/CUDA Reference
cuDenseAffineMatrixFunction< DataType > Class Template Reference

#include <cu_dense_affine_matrix_function.h>

Inheritance diagram for cuDenseAffineMatrixFunction< DataType >:
Collaboration diagram for cuDenseAffineMatrixFunction< DataType >:

Public Member Functions

 cuDenseAffineMatrixFunction (const DataType *A_, const FlagType A_is_row_major_, const LongIndexType num_rows_, const LongIndexType num_colums_, const int num_gpu_devices_)
 Constructor. Matrix B is assumed to be the identity matrix. More...
 
 cuDenseAffineMatrixFunction (const DataType *A_, const FlagType A_is_row_major_, const LongIndexType num_rows_, const LongIndexType num_columns_, const DataType *B_, const FlagType B_is_row_major_, const int num_gpu_devices_)
 
virtual ~cuDenseAffineMatrixFunction ()
 
virtual void dot (const DataType *vector, DataType *product)
 Computes the matrix vector product: More...
 
virtual void transpose_dot (const DataType *vector, DataType *product)
 Computes the matrix vector product: More...
 
- Public Member Functions inherited from cuAffineMatrixFunction< DataType >
 cuAffineMatrixFunction ()
 Constructor. More...
 
virtual ~cuAffineMatrixFunction ()
 Virtual destructor. More...
 
void set_parameters (DataType *t)
 
DataType get_eigenvalue (const DataType *known_parameters, const DataType known_eigenvalue, const DataType *inquiry_parameters) const
 This function defines an analytic relationship between a given set of parameters and the corresponding eigenvalue of the operator. Namely, given a set of parameters and a known eigenvalue of the operator for that specific set of parameters, this function obtains the eigenvalue of the operator for an other given set of parameters. More...
 
- Public Member Functions inherited from cuLinearOperator< DataType >
 cuLinearOperator ()
 
 cuLinearOperator (int num_gpu_devices_)
 Constructor with setting num_rows and num_columns. More...
 
virtual ~cuLinearOperator ()
 
cublasHandle_t get_cublas_handle () const
 This function returns a reference to the cublasHandle_t object. The object will be created, if it is not created already. More...
 
- Public Member Functions inherited from cLinearOperator< DataType >
 cLinearOperator ()
 Default constructor. More...
 
 cLinearOperator (const LongIndexType num_rows_, const LongIndexType num_columns_)
 Constructor with setting num_rows and num_columns. More...
 
virtual ~cLinearOperator ()
 
LongIndexType get_num_rows () const
 
LongIndexType get_num_columns () const
 
void set_parameters (DataType *parameters_)
 Sets the scalar parameter this->parameters. Parameter is initialized to NULL. However, before calling dot or transpose_dot functions, the parameters must be set. More...
 
IndexType get_num_parameters () const
 
FlagType is_eigenvalue_relation_known () const
 Returns a flag that determines whether a relation between the parameters of the operator and its eigenvalue(s) is known. More...
 

Protected Attributes

cuDenseMatrix< DataType > A
 
cuDenseMatrix< DataType > B
 
- Protected Attributes inherited from cuAffineMatrixFunction< DataType >
bool B_is_identity
 
- Protected Attributes inherited from cuLinearOperator< DataType >
int num_gpu_devices
 
bool copied_host_to_device
 
cublasHandle_t * cublas_handle
 
cusparseHandle_t * cusparse_handle
 
- Protected Attributes inherited from cLinearOperator< DataType >
const LongIndexType num_rows
 
const LongIndexType num_columns
 
FlagType eigenvalue_relation_known
 
DataType * parameters
 
IndexType num_parameters
 

Additional Inherited Members

- Protected Member Functions inherited from cuAffineMatrixFunction< DataType >
void _add_scaled_vector (const DataType *input_vector, const LongIndexType vector_size, const DataType scale, DataType *output_vector) const
 Performs the operation \( \boldsymbol{c} = \boldsymbol{c} + \alpha * \boldsymbol{b} \), where \( \boldsymbol{b} \) is an input vector scaled by \( \alpha \) and \( \boldsymbol{c} \) it the output vector. More...
 
- Protected Member Functions inherited from cuLinearOperator< DataType >
int query_gpu_devices () const
 Before any numerical computation, this method chechs if any gpu device is available on the machine, or notifies the user if nothing was found. More...
 
void initialize_cublas_handle ()
 Creates a cublasHandle_t object, if not created already. More...
 
void initialize_cusparse_handle ()
 Creates a cusparseHandle_t object, if not created already. More...
 

Detailed Description

template<typename DataType>
class cuDenseAffineMatrixFunction< DataType >

Definition at line 30 of file cu_dense_affine_matrix_function.h.

Constructor & Destructor Documentation

◆ cuDenseAffineMatrixFunction() [1/2]

template<typename DataType >
cuDenseAffineMatrixFunction< DataType >::cuDenseAffineMatrixFunction ( const DataType *  A_,
const FlagType  A_is_row_major_,
const LongIndexType  num_rows_,
const LongIndexType  num_colums_,
const int  num_gpu_devices_ 
)

Constructor. Matrix B is assumed to be the identity matrix.

Definition at line 30 of file cu_dense_affine_matrix_function.cu.

35  :
36 
37  // Base class constructor
38  cLinearOperator<DataType>(num_rows_, num_columns_),
39 
40  // Initializer list
41  A(A_, num_rows_, num_columns_, A_is_row_major_, num_gpu_devices_)
42 {
43  // This constructor is called assuming B is identity
44  this->B_is_identity = true;
45 
46  // When B is identity, the eigenvalues of A+tB are known for any t
47  this->eigenvalue_relation_known = 1;
48 
49  // Set gpu device
51 }
Base class for linear operators. This class serves as interface for all derived classes.
FlagType eigenvalue_relation_known
void initialize_cublas_handle()
Creates a cublasHandle_t object, if not created already.

References cuAffineMatrixFunction< DataType >::B_is_identity, cLinearOperator< DataType >::eigenvalue_relation_known, and cuLinearOperator< DataType >::initialize_cublas_handle().

Here is the call graph for this function:

◆ cuDenseAffineMatrixFunction() [2/2]

template<typename DataType >
cuDenseAffineMatrixFunction< DataType >::cuDenseAffineMatrixFunction ( const DataType *  A_,
const FlagType  A_is_row_major_,
const LongIndexType  num_rows_,
const LongIndexType  num_columns_,
const DataType *  B_,
const FlagType  B_is_row_major_,
const int  num_gpu_devices_ 
)

Definition at line 59 of file cu_dense_affine_matrix_function.cu.

66  :
67 
68  // Base class constructor
69  cLinearOperator<DataType>(num_rows_, num_columns_),
70 
71  // Initializer list
72  A(A_, num_rows_, num_columns_, A_is_row_major_, num_gpu_devices_),
73  B(B_, num_rows_, num_columns_, B_is_row_major_, num_gpu_devices_)
74 {
75  // Matrix B is assumed to be non-zero. Check if it is identity or generic
76  if (this->B.is_identity_matrix())
77  {
78  this->B_is_identity = true;
79  this->eigenvalue_relation_known = 1;
80  }
81 
82  // Set gpu device
84 }

References cuDenseAffineMatrixFunction< DataType >::B, cuAffineMatrixFunction< DataType >::B_is_identity, cLinearOperator< DataType >::eigenvalue_relation_known, and cuLinearOperator< DataType >::initialize_cublas_handle().

Here is the call graph for this function:

◆ ~cuDenseAffineMatrixFunction()

template<typename DataType >
cuDenseAffineMatrixFunction< DataType >::~cuDenseAffineMatrixFunction
virtual

Definition at line 92 of file cu_dense_affine_matrix_function.cu.

93 {
94 }

Member Function Documentation

◆ dot()

template<typename DataType >
void cuDenseAffineMatrixFunction< DataType >::dot ( const DataType *  vector,
DataType *  product 
)
virtual

Computes the matrix vector product:

\[ \boldsymbol{c} = (\mathbf{A} + t \mathbf{B}) \boldsymbol{b}. \]

Parameters
[in]vectorThe input vector :math:\\boldsymbol{b} is given by vector. If \( \mathbf{A} \) and \( \mathbf{B} \) are \( m \times n \) matrices, the length of input c vector is n.
[out]productThe output of the product, \( \boldsymbol{c} \), is written in-place into this array. Let
m be the number of rows of \( \mathbf{A} \) and \( \mathbf{B} \), then, the output vector product is 1D column array of length m.

Implements cLinearOperator< DataType >.

Definition at line 118 of file cu_dense_affine_matrix_function.cu.

121 {
122  // Matrix A times vector
123  this->A.dot(vector, product);
124  LongIndexType min_vector_size;
125 
126  // Matrix B times vector to be added to the product
127  if (this->B_is_identity)
128  {
129  // Check parameter is set
130  ASSERT((this->parameters != NULL), "Parameter is not set.");
131 
132  // Find minimum of the number of rows and columns
133  min_vector_size = \
134  (this->num_rows < this->num_columns) ? \
135  this->num_rows : this->num_columns;
136 
137  // Adding input vector to product
138  this->_add_scaled_vector(vector, min_vector_size,
139  this->parameters[0], product);
140  }
141  else
142  {
143  // Check parameter is set
144  ASSERT((this->parameters != NULL), "Parameter is not set.");
145 
146  // Adding parameter times B times input vector to the product
147  this->B.dot_plus(vector, this->parameters[0], product);
148  }
149 }
DataType * parameters
const LongIndexType num_rows
const LongIndexType num_columns
void _add_scaled_vector(const DataType *input_vector, const LongIndexType vector_size, const DataType scale, DataType *output_vector) const
Performs the operation , where is an input vector scaled by and it the output vector.
#define ASSERT(condition, message)
Definition: debugging.h:20
int LongIndexType
Definition: types.h:60

References ASSERT.

◆ transpose_dot()

template<typename DataType >
void cuDenseAffineMatrixFunction< DataType >::transpose_dot ( const DataType *  vector,
DataType *  product 
)
virtual

Computes the matrix vector product:

\[ \boldsymbol{c} = (\mathbf{A} + t \mathbf{B})^{\intercal} \boldsymbol{b}. \]

Parameters
[in]vectorThe input vector \( \boldsymbol{b} \) is given by vector. If \( \mathbf{A} \) and \( \mathbf{B} \) are \( m \times n \) matrices, the length of input vector is n.
[out]productThe output of the product, \( \boldsymbol{c} \), is written in-place into this array. Let n be the number of columns of \( \mathbf{A} \) and \( \mathbf{B} \), then, the output vector product is 1D column array of length m.

Implements cLinearOperator< DataType >.

Definition at line 174 of file cu_dense_affine_matrix_function.cu.

177 {
178  // Matrix A times vector
179  this->A.transpose_dot(vector, product);
180  LongIndexType min_vector_size;
181 
182  // Matrix B times vector to be added to the product
183  if (this->B_is_identity)
184  {
185  // Check parameter is set
186  ASSERT((this->parameters != NULL), "Parameter is not set.");
187 
188  // Find minimum of the number of rows and columns
189  min_vector_size = \
190  (this->num_rows < this->num_columns) ? \
191  this->num_rows : this->num_columns;
192 
193  // Adding input vector to product
194  this->_add_scaled_vector(vector, min_vector_size,
195  this->parameters[0], product);
196  }
197  else
198  {
199  // Check parameter is set
200  ASSERT((this->parameters != NULL), "Parameter is not set.");
201 
202  // Adding "parameter * B * input vector" to the product
203  this->B.transpose_dot_plus(vector, this->parameters[0], product);
204  }
205 }

References ASSERT.

Member Data Documentation

◆ A

template<typename DataType >
cuDenseMatrix<DataType> cuDenseAffineMatrixFunction< DataType >::A
protected

Definition at line 64 of file cu_dense_affine_matrix_function.h.

◆ B

template<typename DataType >
cuDenseMatrix<DataType> cuDenseAffineMatrixFunction< DataType >::B
protected

The documentation for this class was generated from the following files: