glearn.priors.InverseGamma#
- class glearn.priors.InverseGamma(shape=1.0, scale=1.0)#
Inverse Gamma distribution.
Note
For the methods of this class, see the base class
glearn.priors.Prior
.- Parameters:
- shapefloat or array_like[float], default=1.0
The shape parameter \(\alpha\) of Gamma distribution. If an array \(\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)\) is given, the prior is assumed to be \(p\) independent Gamma distributions each with shape \(\alpha_i\).
- ratefloat or array_like[float], default=1.0
The rate \(\beta\) of Gamma distribution. If an array \(\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)\) is given, the prior is assumed to be \(p\) independent Gamma distributions each with rate \(\beta_i\).
See also
Notes
Single Hyperparameter:
The inverse Gamma distribution with shape parameter \(\alpha > 0\) and rate parameter \(\beta > 0\) is defined by the probability density function
\[p(\theta \vert \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma{\alpha}} \theta^{-(\alpha+1)} e^{-\frac{\beta}{\theta}},\]where \(\Gamma\) is the Gamma function.
Multiple Hyperparameters:
If an array of the hyperparameters are given, namely \(\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)\), then the prior is the product of independent priors
\[p(\boldsymbol{\theta}) = p(\theta_1) \dots p(\theta_p).\]In this case, if the input arguments
shape
andrate
are given as the arrays \(\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)\) and \(\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)\), each prior \(p(\theta_i)\) is defined as the inverse Gamma distribution with shape parameter \(\alpha_i\) and rate parameter \(\beta_i\). In contrary, ifshape
andrate
are given as the scalars \(\alpha\) and \(\beta\), then all priors \(p(\theta_i)\) are defined as the inverse Gamma distribution with shape parameter \(\alpha\) and rate parameter \(\beta\).Examples
Create Prior Objects:
Create the inverse Gamma distribution with the shape parameter \(\alpha=4\) and rate parameter \(\beta=2\).
>>> from glearn import priors >>> prior = priors.InverseGamma(4, 2) >>> # Evaluate PDF function at multiple locations >>> t = [0, 0.5, 1] >>> prior.pdf(t) array([ nan, 1.56293452, 0.36089409]) >>> # Evaluate the Jacobian of the PDF >>> prior.pdf_jacobian(t) array([ nan, -3.12586904, -1.08268227]) >>> # Evaluate the Hessian of the PDF >>> prior.pdf_hessian(t) array([[ nan, 0. , 0. ], [ 0. , -12.50347615, 0. ], [ 0. , 0. , 3.60894089]]) >>> # Evaluate the log-PDF >>> prior.log_pdf(t) -17.15935597045384 >>> # Evaluate the Jacobian of the log-PDF >>> prior.log_pdf_jacobian(t) array([ -6.90775528, -10.05664278, -11.05240845]) >>> # Evaluate the Hessian of the log-PDF >>> prior.log_pdf_hessian(t) array([[-10.60379622, 0. , 0. ], [ 0. , -3.35321479, 0. ], [ 0. , 0. , -1.06037962]]) >>> # Plot the distribution and its first and second derivative >>> prior.plot()
Where to Use the Prior object:
Define a covariance model (see
glearn.Covariance
) where its scale parameter is a prior function.>>> # Generate a set of sample points >>> from glearn.sample_data import generate_points >>> points = generate_points(num_points=50) >>> # Create covariance object of the points with the above kernel >>> from glearn import covariance >>> cov = glearn.Covariance(points, kernel=kernel, scale=prior)
- Attributes:
- shapefloat or array_like[float], default=0
Shape parameter \(\alpha\) of the distribution
- ratefloat or array_like[float], default=0
Rate parameter \(\beta\) of the distribution
Methods
suggest_hyperparam
([positive])Find an initial guess for the hyperparameters based on the peaks of the prior distribution.
pdf
(x)Probability density function of the prior distribution.
pdf_jacobian
(x)Jacobian of the probability density function of the prior distribution.
pdf_hessian
(x)Hessian of the probability density function of the prior distribution.