glearn.Covariance.get_size#
- Covariance.get_size()#
Returns the size of the covariance matrix.
- Returns:
- nint
The size \(n\) of the \(n \times n\) covariance matrix.
See also
Examples
Create a covariance matrix based on a set of sample data with four points in \(d=2\) dimensional space.
>>> # Generate a set of points >>> from glearn.sample_data import generate_points >>> x = generate_points(num_points=4, dimension=2) >>> # Create a covariance object >>> from glearn import Covariance >>> cov = Covariance(x) >>> # Get the size of the covariance matrix >>> cov.get_size() 4
The size of the covariance defined in the above is the same as the size of the training points,
x.shape[0]
.By providing a set of hyperparameters, the covariance matrix can be fully defined. Here we set \(\sigma=2\), \(\varsigma=3\), and \(\boldsymbol{\alpha}= (1, 2)\).
>>> # Get the covariance matrix for given hyperparameters >>> cov.set_sigmas(2.0, 3.0) >>> cov.set_scale([1.0, 2.0]) >>> cov.get_matrix() array([[13. , 3.61643745, 3.51285267, 3.47045163], [ 3.61643745, 13. , 3.32078482, 3.14804532], [ 3.51285267, 3.32078482, 13. , 3.53448631], [ 3.47045163, 3.14804532, 3.53448631, 13. ]])