glearn.priors.BetaPrime.suggest_hyperparam#
- BetaPrime.suggest_hyperparam(positive=True)#
- Find an initial guess for the hyperparameters based on the peaks of the prior distribution. - Parameters:
- positivebool, default=False
- If True, it suggests a positive hyperparameter. This is used for instance if the suggested hyperparameter is used for the scale parameter which should always be positive. 
 
- Returns:
- hyperparamfloat or numpy.array[float]
- A feasible guess for the hyperparameter. The output is either a scalar or an array of the same size as the input parameters of the distribution. 
 
 - See also - Notes - For the beta prime distribution with shape parameter \(\alpha\) and rate parameter \(\beta\), the suggested hyperparameter is determined as follows: - If \(\beta > 1\), the suggested hyperparameter is the mean of the distribution \[\mu = \frac{\alpha}{\beta - 1}.\]
- If \(\alpha > 1\), the suggested hyperparameter is the mod of the distribution \[\mu' = \frac{\alpha-1}{\beta + 1}.\]
- Other than the above conditions, the number 1 is returned. 
 - The suggested hyperparameters can be used as initial guess for the optimization of the posterior functions when used with this prior. - Examples - Create the beta prime distribution with the shape parameter \(\alpha=2\) and rate parameter \(\beta=4\). - >>> from glearn import priors >>> prior = priors.BetaPrime(2, 4) >>> # Find a feasible hyperparameter value >>> prior.suggest_hyperparam() array([0.6666666666666666]) - The above value is the mean of the distribution.