imate.InterpolateLogdet.lower_bound#
- InterpolateLogdet.lower_bound(t)#
Bound of the interpolation function.
If \(p < 1\), this function is a lower bound, and if \(p > 1\), this function is an upper bound of the interpolation function.
- Parameters:
- tfloat or numpy.array
An inquiry point or an array of inquiry points.
- Returns:
- boundfloat or numpy.array
Bound function evaluated at t. If t is an array, the output is also an array of the size of t.
See also
Notes
A lower bound for \(\mathrm{logdet}(\mathbf{A} + t \mathbf{B})\) is obtained as follows. Define
\[\Vert \mathbf{A} \Vert_0 = \left| \mathrm{det}(\mathbf{A}) \right|^{\frac{1}{n}}\]Also, let
\[\tau_0(t) = \frac{ \Vert \mathbf{A} + t \mathbf{B} \Vert_0} {\Vert \mathbf{B} \Vert_0}\]and \(\tau_{0, 0} = \tau_0(0)\). A sharp bound of the function \(\tau_0(y)\) is (see [1], Section 3):
\[\tau_{0}(t) \geq \tau_{0, 0} + t, \quad t \in [0, \infty).\]The above inequality originate from the Brunn-Minkowski determinant inequality.
References
[1]Ameli, S., and Shadden. S. C. (2022). Interpolating Log-Determinant and Trace of the Powers of Matrix \(\mathbf{A} + t \mathbf{B}\). Statistics and Computing 32, 108. https://doi.org/10.1007/s11222-022-10173-4.
Examples
Create an interpolator object \(f\) using four interpolant points \(t_i\):
>>> # Generate sample matrices (symmetric positive-definite) >>> from imate.sample_matrices import correlation_matrix >>> A = correlation_matrix(size=20, scale=1e-1) >>> B = correlation_matrix(size=20, scale=2e-2) >>> # Initialize interpolator object >>> from imate import InterpolateLogdet >>> ti = [1e-2, 1e-1, 1, 1e1] >>> f = InterpolateLogdet(A, B, ti=ti)
Create an array t and evaluate upper bound on t. Also, interpolate the function \(f\) on the array t.
>>> # Interpolate at an array of points >>> import numpy >>> t = numpy.logspace(-2, 1, 1000) >>> lb = f.lower_bound(t) >>> interp = f.interpolate(t)
Plot the results:
>>> import matplotlib.pyplot as plt >>> # Plot settings (optional) >>> from imate._utilities import set_custom_theme >>> set_custom_theme(font_scale=1.15) >>> plt.semilogx(t, interp, color='black', label='Interpolation') >>> plt.semilogx(t, lb, '--', color='black', label='Lower Bound') >>> plt.xlim([t[0], t[-1]]) >>> plt.ylim([-10, 50]) >>> plt.xlabel('$t$') >>> plt.ylabel('$\mathrm{logdet}(\mathbf{A} + t \mathbf{B})$') >>> plt.title('Interpolation of Log-Determinant') >>> plt.legend() >>> plt.show()