Index _ | A | B | C | D | E | F | G | H | I | K | L | M | N | P | R | S | T | U _ __call__() (glearn.kernels.Exponential method) (glearn.kernels.Kernel method) (glearn.kernels.Linear method) (glearn.kernels.Matern method) (glearn.kernels.RationalQuadratic method) (glearn.kernels.SquareExponential method) A auto_covariance() (glearn.Covariance method) B BetaPrime (class in glearn.priors) C Cauchy (class in glearn.priors) Covariance (class in glearn) cross_covariance() (glearn.Covariance method) CYTHON_BUILD_FOR_DOC CYTHON_BUILD_IN_SOURCE D DEBUG_MODE dot() (glearn.Covariance method) E Eigencount and Numerical Rank Erlang (class in glearn.priors) Estrada Index of Graphs Exponential (class in glearn.kernels) F For Linux users: For macOS users: For Windows users: G Gamma (class in glearn.priors) GaussianProcess (class in glearn) generate_data() (in module glearn.sample_data) generate_design_matrix() (glearn.LinearModel method) generate_points() (in module glearn.sample_data) get_gpu_name() (in module glearn.device) get_imate_options() (glearn.Covariance method) get_matrix() (glearn.Covariance method) get_mem() (glearn.Memory method) get_num_cpu_threads() (in module glearn.device) get_num_gpu_devices() (in module glearn.device) get_nvidia_driver_version() (in module glearn.device) get_parameters() (glearn.kernels.Matern method) (glearn.kernels.RationalQuadratic method) get_processor_name() (in module glearn.device) get_resident_memory() (glearn.Memory static method) get_scale() (glearn.Covariance method) get_sigmas() (glearn.Covariance method) get_size() (glearn.Covariance method) glearn module H Hutchinson's Method I info() (in module glearn) InverseGamma (class in glearn.priors) K Kernel (class in glearn.kernels) L Linear (class in glearn.kernels) LinearModel (class in glearn) locate_cuda() (in module glearn.device) Log-Determinant log_pdf() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.Prior method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) log_pdf_hessian() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.Prior method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) log_pdf_jacobian() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.Prior method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) logdet() (glearn.Covariance method) M Matern (class in glearn.kernels) Memory (class in glearn) module glearn N Normal (class in glearn.priors) P pdf() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) pdf_hessian() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) pdf_jacobian() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) plot() (glearn.kernels.Exponential method) (glearn.kernels.Kernel method) (glearn.kernels.Linear method) (glearn.kernels.Matern method) (glearn.kernels.RationalQuadratic method) (glearn.kernels.SquareExponential method) (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.Prior method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) plot_likelihood() (glearn.GaussianProcess method) predict() (glearn.GaussianProcess method) Prior (class in glearn.priors) R RationalQuadratic (class in glearn.kernels) reset() (glearn.Memory method) (glearn.Timer method) restrict_to_single_processor() (in module glearn.device) S Schatten p-norm and Schatten p-anti-norm set_imate_options() (glearn.Covariance method) set_scale() (glearn.Covariance method) set_sigmas() (glearn.Covariance method) solve() (glearn.Covariance method) Spectral Density SquareExponential (class in glearn.kernels) start() (glearn.Memory method) Stochastic Lanczos Quadrature Method stop() (glearn.Memory method) StudentT (class in glearn.priors) suggest_hyperparam() (glearn.priors.BetaPrime method) (glearn.priors.Cauchy method) (glearn.priors.Erlang method) (glearn.priors.Gamma method) (glearn.priors.InverseGamma method) (glearn.priors.Normal method) (glearn.priors.StudentT method) (glearn.priors.Uniform method) T tic() (glearn.Timer method) Timer (class in glearn) toc() (glearn.Timer method) Trace of Matrix Powers trace() (glearn.Covariance method) traceinv() (glearn.Covariance method) train() (glearn.GaussianProcess method) U Uniform (class in glearn.priors) update_hyperparam() (glearn.LinearModel method)